Class LinearRegressionWithSGD
Object
org.apache.spark.mllib.regression.GeneralizedLinearAlgorithm<LinearRegressionModel>
org.apache.spark.mllib.regression.LinearRegressionWithSGD
- All Implemented Interfaces:
 Serializable,org.apache.spark.internal.Logging
public class LinearRegressionWithSGD
extends GeneralizedLinearAlgorithm<LinearRegressionModel>
implements Serializable
Train a linear regression model with no regularization using Stochastic Gradient Descent.
 This solves the least squares regression formulation
              f(weights) = 1/n ||A weights-y||^2^
 (which is the mean squared error).
 Here the data matrix has n rows, and the input RDD holds the set of rows of A, each with
 its corresponding right hand side label y.
 See also the documentation for the precise formulation.
- See Also:
 
- 
Nested Class Summary
Nested classes/interfaces inherited from interface org.apache.spark.internal.Logging
org.apache.spark.internal.Logging.LogStringContext, org.apache.spark.internal.Logging.SparkShellLoggingFilter - 
Method Summary
Modifier and TypeMethodDescriptionThe optimizer to solve the problem.Methods inherited from class org.apache.spark.mllib.regression.GeneralizedLinearAlgorithm
getNumFeatures, isAddIntercept, run, run, setIntercept, setValidateDataMethods inherited from class java.lang.Object
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitMethods inherited from interface org.apache.spark.internal.Logging
initializeForcefully, initializeLogIfNecessary, initializeLogIfNecessary, initializeLogIfNecessary$default$2, isTraceEnabled, log, logBasedOnLevel, logDebug, logDebug, logDebug, logDebug, logError, logError, logError, logError, logInfo, logInfo, logInfo, logInfo, logName, LogStringContext, logTrace, logTrace, logTrace, logTrace, logWarning, logWarning, logWarning, logWarning, MDC, org$apache$spark$internal$Logging$$log_, org$apache$spark$internal$Logging$$log__$eq, withLogContext 
- 
Method Details
- 
optimizer
Description copied from class:GeneralizedLinearAlgorithmThe optimizer to solve the problem.- Specified by:
 optimizerin classGeneralizedLinearAlgorithm<LinearRegressionModel>- Returns:
 - (undocumented)
 
 
 -